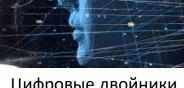
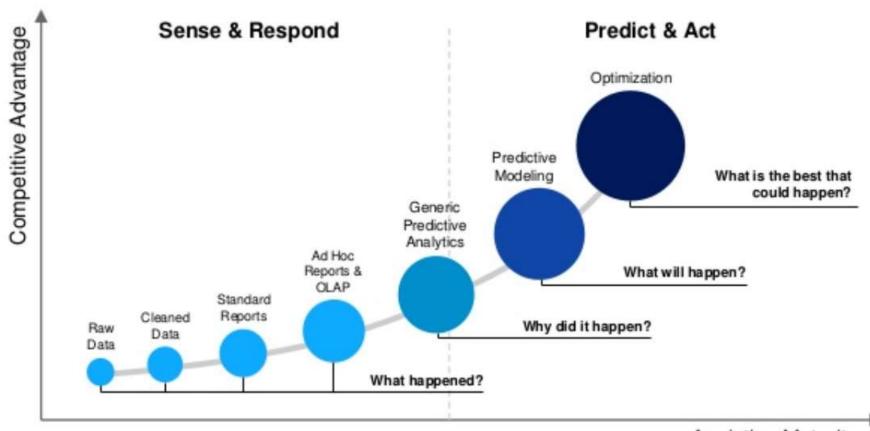

Цифровизация горной отрасли —

Что нового мы узнали, и каковы тенденции?

Что такое цифровые технологии в горной отрасли? Мы говорим о радикально

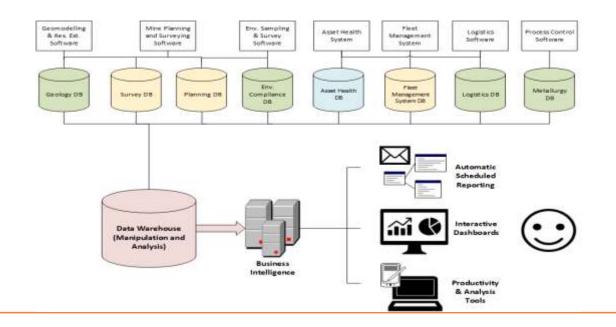

новых технологиях ...

Цифровые двойники


«Рудники будущего» ™ (Rio Tinto)

Машинное обучение

... или о возможности быстрее (или автоматически) принимать лучшие решения

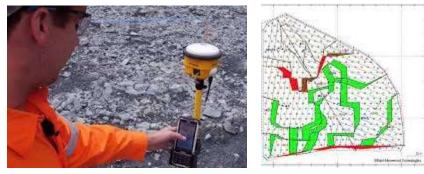


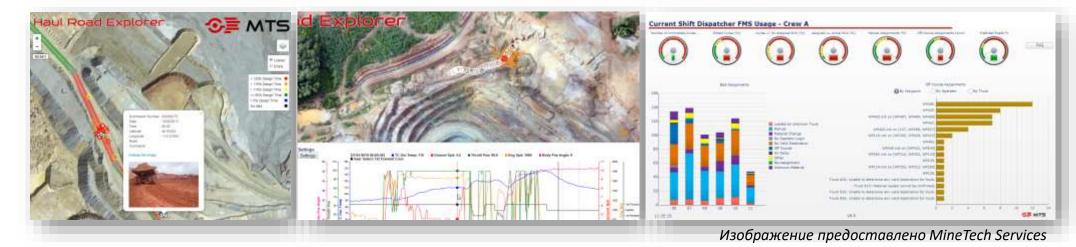
Analytics Maturity

Источник изображения: <u>Delaware Consulting Firm</u>

Основные тенденции: Значительный прогресс в ускорении связи и сбора данных

- На большинстве карьеров и во многих подземных рудниках теперь есть системы управления парком техники
- В некоторых карьерах установлены свои сети 4G/5G LTE;
 - Telstra устанавливает аналогичную систему под землей на руднике Каннингтон
- На некоторых предприятиях рассматривают возможность использования спутниковой широкополосной связи (Starlink; Project Kuiper)
- Некоторые предприятия переходят к использованию хранилищ данных/консолидации данных



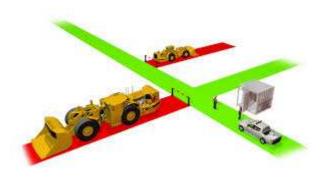


Основные тенденции: сделать данные видимыми

• Чтобы принять лучшее решение, необходимо определить, что именно происходит.

Изображение предоставлено Blast Movement Technologies

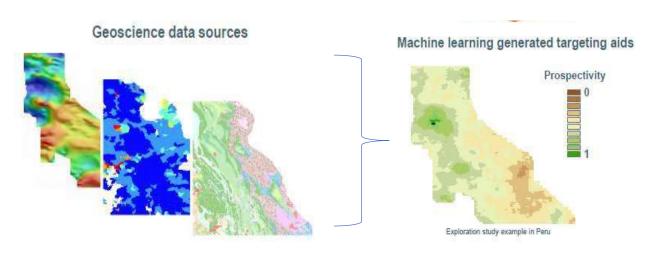
Основные тенденции: Датчики становятся умнее и дают больше информации


- Например, Система безопасности водителя Caterpillar (DSS)
 - Установлена на более чем 5000 самосвалах.
 - Определяет усталость: 600 000 выявленных случаев усталости за 8 миллионов часов. 1641 миль водители проехали во сне
 - Также определяет отвлекающие факторы выделяет перекрестки, на которых необходимо улучшить видимость.

Основные тенденции: дистанционное управление подземным горным оборудованием стало распространненым

- В настоящее время большинство операторов по-прежнему работают на объекте, но могут работать и за пределами объекта
- Каждый оператор может управлять несколькими машинами
- Основная проблема взаимодействие с другим персоналом подземного рудника

Основные тенденции: Автоматизация набирает обороты за пределами экономик с высокой заработной платой


- Более 400 автоматизированных самосвалов в Западной Австралии
- 30% железной руды и 6% золота добывается на (полу)автоматизированных производствах
- Основные преимущества:
 - Увеличение времени работы, хотя частично оно уменьшается из-за простоев на перекрестках или на участках, где также работает неавтоматизированная техника.
 - Меньше необходимость в наборе и обучении персонала, особенно при высокой текучести кадров
- Технологии, вероятно, будут развиваться быстрее, поскольку производители разрабатывают беспилотные автомобили

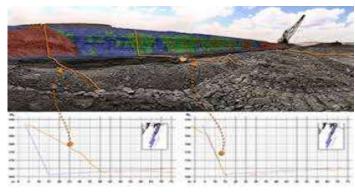
Основные тенденции: Большие данные / прогнозная аналитика требуют ясного мышления

- В стадии разработки
 - Некоторые проекты прекращены, потому что команда перегружена объемом собранных данных и имеет мало времени для обработки и ответа
 - Проблема с получением чистых данных, а также с пониманием того, какие признаки искать
 - Успешные проекты обеспечивают привлечение технических специалистов
 - Успешные проекты реализуются поэтапно, что дает возможность выявлять проблемы, пока они поддаются решению

Изображение предоставлено Schneider Electric

Основные тенденции: Цифровые двойники - настоящие двойники или просто модели?

- В идеале «цифровой двойник» моделирует реальное производство, чтобы оценить альтернативные сценарии, преимущества и недостатки, протестировать различные конфигурации или стратегии эксплуатации.
 - Большинство моделей в основном являются имитационными моделями новых проектов, но все же имеют ценность
- Последний прорыв использование имитационных моделей оперативного контроля для планирования горных работ.



Основные тенденции: Дополненная реальность - в настоящее время нишевая технология

- Направлена на предоставление полевым специалистам информации из баз данных
- Не имеет широкого применения

Проверка соответствия плану

Изображение предоставлено Maptek

Техобслуживание

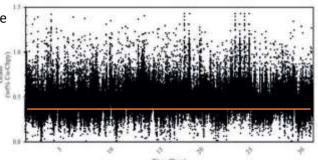
Изображение предоставлено Caterpillar

Основные тенденции: Смена парадигмы - новая конструкция самосвалов

• Самосвалу Komatsu без кабины не нужно разворачиваться и подъезжать задним ходом в зоне погрузки, но отсутствие кабины не привело к увеличению полезной нагрузки.

Основные тенденции: Смена парадигмы - сортировка руды

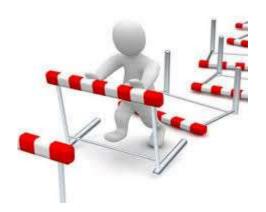
- Значительный потенциал для экономической эффективности:
 - Снижение затрат на измельчение
 - 3% общего энергопотребления
 - Позволяет применять более продуктивные и менее селективные системы разработки
- Два основных этапа
 - Измерение
 - Сортировка основная сложность сегодня


Тип датчика	XRF, лазер, инфракрасный, цветовой	Гамма	Рентгеновский	PGNAA*	Магнитно-резонансный
Что измеряет	Состав поверхности, цвет	Радиация	Атомная плотность	Состав элементов	Минералогический состав
Что сортирует	Отдельные частицы	Крупные контейнеры	Отдельные частицы	Крупные контейнеры	Контейнеры (1 – 10 т)
Без предв. подготовки (промывка и т. д.)	X	√	✓	✓	✓
Измерение всей горной массы	X	✓	×	✓	✓
Точная оценка содержаний	×	✓	×	✓	✓
Мгновенный результат (<10 сек)	✓	×	√	X	✓
Только одна калибровка	×	×	×	×	✓
Примеры компаний	MineSense; HFMK		TOMRA		NextOre
Примеры рудников	Highland Valley Copper, CA Кокпатас, Узбекистан	Rossing Uranium, Намибия	Многие алмазные рудники	-	Ridgeway block cave, AU
Где сортировка	Ковш экскаватора; самосвал; конвейер	Самосвал	Конвейер		Конвейер
* нейтронно-активационный анализ по мгновенному гамма-излучению					

Сортировка сульфидных золотосодержащих руд в Узбекистане

	Масса руды	Кол-во золота
Ниже бортового	34%	20%
Выше бортового	66%	80%

Содержание меди


Time (Days)

Последствия фрактального распределения содержаний для крупнообъемной сортировки руд меднопорфирового месторождения, Питер Когхилл, Дэвид Миляк, Элизабет Уильямс

Основные препятствия

- Ненадежная сеть связи
 - Особенно в подземке и особенно при покупке дешевых решений
- Перегрузка большим объемом данных
 - Нужна система хранения данных и инструменты бизнес-аналитики
 - Необходимо понимать, какие данные нужны для принятия решений
- Недостаток воображения
 - Будьте готовы пересмотреть ключевые показатели эффективности и определить, какая информация вам нужна для управления производством.
- Низкая надежность техобслуживания
 - Оптимизация производства лучше всего работает при устойчивой работе; частые остановки на техническое обслуживание приводят к неустойчивой работе
- Несогласованность комплектов оборудования
 - Сложно собирать данные, если используется множество различных типов оборудования
- Отсутствие квалифицированных людей с опытом работы на объекте
 - Аналитикам необходимо знать операционные процессы

Меры, которые можно предпринять сейчас для развития возможностей

- Развивать свои возможности и думать о том, что действительно необходимо измерять
 - Проанализировать, какие данные вы собираете сейчас и какие данные вы хотели бы собирать
 - Внедрить подходящую масштабируемую сеть связи
 - Формировать хранилища данных и развивать навыки бизнес-аналитики
 - Нанимать специалистов по анализу данных
 - Проанализировать КРІ и информационные панели; сосредоточиться на быстрых результатах
- Понять, что у вас уже есть
 - Система VIMS на самосвалах Caterpillar позволяет собирать значительное количество данных
- Установить датчики и собирать больше подробных данных
- По мере развития возможностей, последующие шаги становятся более понятными и их легче реализовать

Счастливого пути!

